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Sensors can be used alone or mounted on unmanned aerial vehicles (left), robot-assisted
imaging platforms (right), or cable-suspended camera systems to take real-time images
and measurements throughout the selected time duration. Photos courtesy of Flickr/Wil C.
Fry (left) and Flickr/PETROSS, TERRA-MEPP & WEST (right).

Editor's note: This article is Part |l of a two-part series. See last month’s

article at https://doi.org/10.1002/csan.20145.
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In the last issue, we introduced data science in the context of agriculture and
highlighted its importance in precision agriculture. In this issue, we discuss some of the
insights into the applications, advancements, and future of data science in agricultural

systems.

Breeding and Screening of Crop Varieties

Data science is increasingly used in plant breeding. High-throughput phenotyping,
which measures certain plant traits from the molecular to whole-plant level, has
benefitted from the use of remote and proximal sensing to guide breeders through
accurate trait selection (Singh et al,, 2016). This type of non-destructive data
collection has been adopted to crop species to identify and evaluate tolerant traits to
abiotic (e.g., drought and flood) and biotic (pests, weeds, and diseases) stresses
throughout different growth stages. Conventional phenotyping was particularly
constrained, being a laborious, destructive, and time-consuming process (Beauchéne

et al, 2019).

There have been several advancements in the types of sensors used to image, such as
hyperspectral, fluorescence, thermal, and visible to infrared. These sensors can be
used alone or as mounted on unmanned aerial vehicles (UAVs), robot-assisted imaging
platforms, or cable-suspended camera systems to take real-time images and
measurements throughout the selected time duration. Unmanned aerial vehicles are
particularly useful for low-latitude, high-resolution aerial imaging to evaluate crop
emergence, vigor, and yield potential of row crops (Sankaran et al., 2015; Shi et al., 2016
). Moreover, big data and machine-learning techniques have been applied in the areas

of molecular biology and biotechnology, including genomics, transcriptomics,
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proteomics, and systems biology (Ma et al,, 2014) and to evaluate the yield

performance of genetically modified crops (Johnson et al., 2019).

Crop Protection

There can be monetary and environmental
costs that accompany pesticide applications
currently required for pest management.
While also costly, excess use of pesticides

has been shown to increase the prevalence

of pesticide resistance and negative effects

To improve pesticide on non-target species (Mallet, 1989). To
recommendations, researchers

have been using data science to
accurately calculate the rate and researchers have been using data science to
timing of application of these agro-

chemicals. Photo courtesy of
Flickr/Tamina Miller. application of these agro-chemicals. This

improve pesticide recommendations,

accurately calculate the rate and timing of

approach considers data collected about the

pest, such as life cycle and biology, along
with environmental factors such as natural predators, growth stages of the target
plant, and weather conditions during the growing season (Meisner et al., 2016).
Additionally, big data and machine-learning methods have become very useful to
control weeds (lp et al., 2018), detect foliar diseases (Ferentinos, 2018), classify field

crop pests (Xie et al,, 2018), and detect stored grain pests (Shen et al., 2018).
Remote Sensing
Remote sensing is another area where data science is intensively used. The common

applications of remote sensing in agriculture are monitoring agricultural land use,

estimating soil moisture, generating crop planting/intensity maps, classifying crops,
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assessing within- and between-field variabilities, forecasting crop yields, estimating
evapotranspiration and irrigation requirements, monitoring crop health for input
optimization, and evaluating ecosystem services (Weiss et al., 2020). Satellite missions
such as Landsat and Sentinel have substantially improved their spatial, spectral,
temporal, and radiometric resolutions in the past (Wulder et al.,, 2019). These high-
resolution images are utilized to calculate various vegetative indices to evaluate the
performances of different agricultural systems (Hatfield et al., 2019). For example, Xu
et al. (2018) demonstrated how remote sensing can be used to estimate nitrogen
uptake and cover crop biomass following winter, which could be useful in determining

management practices for early spring.
Agricultural System Models and Decision Support Systems
Agricultural system models require a vast

number of data inputs to simulate target

outputs (e.g., crop development, water

balance, nutrient dynamics, soil carbon, yield,

Data science is intensively used in
remote sensing and decision

net return, etc.) at farm and landscape scales

(Antle et al,, 2017). Moreover, advanced data support platforms based on web
GIS. Photo courtesy of Adobe

science approaches such as deep learning Stock/Monopoly919

have been used to train crop model inputs

and outputs to evaluate the impacts of

irrigation amount and timing on crop yield (Saravi et al., 2019). Wireless sensor
networks (WSN), in combination with internet of things (IoT) and data analytics, aid in
collection of various agro-environmental data, so these models can be integrated into
decision support platforms. For example, Ellenburg et al. (2019) introduced Regional
Hydrological Extremes Assessment System (RHEAS), an integrated modeling

framework, to estimate onset, severity, recovery, and duration of regional droughts and
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expected crop yield outlooks. Moreover, decision support platforms based on web GIS
are useful to connect local farmers to regional and global agriculture to improve
demand-and-supply-based input provision, marketing, and agricultural policies

(Delgado et al., 2019).

Combating Climate Variability and Change

Climate data enables researchers to evaluate

the impacts of climate change on major

|5 P e crops and formulate and implement
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adaptation strategies such as climate-smart

) agriculture (Rosenzweig et al., 2014; Hassani
Climate data enables researchers to & ( &

evaluate the impacts of climate et al, 2019). Data science together with the
change on major crops. Photo

courtesy of Adobe
Stock/scharfsinngs. communication technology (ICT) is used in

advancement in information and

forecasting weather and seasonal climate,

which could help farmers to deal with future
climate variability (Klemm and McPherson, 2017). Improved understanding of the
upcoming season would give producers time to make necessary changes to farm
management. Long-term crop, soil, climate, and topographic data from large
commercial farms have demonstrated the potential to design site-specific
adaptations to climate variability (Martinez-Feria and Basso, 2020). Furthermore,
artificial intelligence, Bayesian models, and neural networks have shown their potential
to enhance climate warnings to extreme weather (Huntingford et al,, 2019). Recently,
Newlands et al. (2019) explored the applicability of deep learning to climate risk
management options such as agricultural insurance. It was more accurate than the
other approaches typically used and demonstrated its potential in lowering insurance

coverage costs, among others.
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Development of Smallholder Farms

Datasets that evaluate the production performance of major crops such as legumes
(Cernay et al,, 2016) and spatial databases like RiceAtlas (Laborte et al., 2017) can be
utilized to enhance the food and nutritional security of smallholder farmers in
developing countries. These datasets are particularly useful to identify the interaction
effects of crop species x location x growing season x treatment combinations on yield,
nitrogen content, and water use efficiency under different management practices
(Cernay et al, 2016). Utilizing this information can allow farmers to predict issues
surrounding environmental variability and to increase production efficiency across
different agro-ecological regions. Data science also offers many opportunities such as
increasing the effectiveness of agricultural development projects and generating
better information for policy decisions. This involves creating systems that respond to
local problems and can be utilized in future predicaments. However, it requires
technological development in extension services, careful governance, and public
investment in order to avoid a few growers monopolizing available space and reducing

further development (van Etten et al., 2017).

Marketing and Supply Chain M anagement

Pre-season yield forecasting can assist on-farm decision making regarding product
harvesting, storage, and marketing (Oliveira et al., 2018). Data science is widely used in
tracking of food supply chains with the use of Radio Frequency Identification (RFID),
intelligent supply—demand forecasting tools, and information management systems to
ensure quantity, quality, and food system transparency while minimizing food losses

along the supply chain (Tzounis et al.,, 2017).

Future Prospects
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Data science has been identified as one of
the breakthroughs to advance food and
agricultural research by 2030 by the National
Academies of Sciences, Engineering, and
Medicine. However, challenges exist regarding
quality, ownership, privacy, and security of
data; integration of data types; data
processing and analytics; and uncertainties in
algorithms (Wolfert et al,, 2017). Moreover,

data science and scientific principles should

Datasets can be utilized to enhance
the food and nutritional security of
smallholder farmers in developing
countries. Photo courtesy of
Flickr/CIGAR Research Program.

be utilized together to explore data insightfully and to interpret the results accurately.

This theory-guided data science will require interdisciplinary collaboration in research.

With increasing open sources of big data, computational infrastructures, innovative

methodologies, and public involvement in data collection such as citizen science (Ryan

et al, 2019), data science has the potential to increase food security and

environmental sustainability while promoting public- and private-sector initiatives and

business ventures in future agriculture.
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