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Sensors can be used alone or mounted on unmanned aerial vehicles (left), robot-assisted

imaging platforms (right), or cable-suspended camera systems to take real-time images

and measurements throughout the selected time duration. Photos courtesy of Flickr/Wil C.

Fry (left) and Flickr/PETROSS, TERRA-MEPP & WEST (right).

Editor’s note: This article is Part II of a two-part series. See last month’s

article at https://doi.org/10.1002/csan.20145.

https://doi.org/10.1002/csan.20145


In the last issue, we introduced data science in the context of agriculture and

highlighted its importance in precision agriculture. In this issue, we discuss some of the

insights into the applications, advancements, and future of data science in agricultural

systems.

Breeding and Screening of Crop Varieties

Data science is increasingly used in plant breeding. High-throughput phenotyping,

which measures certain plant traits from the molecular to whole-plant level, has

benefitted from the use of remote and proximal sensing to guide breeders through

accurate trait selection (Singh et al., 2016). This type of non-destructive data

collection has been adopted to crop species to identify and evaluate tolerant traits to

abiotic (e.g., drought and flood) and biotic (pests, weeds, and diseases) stresses

throughout different growth stages. Conventional phenotyping was particularly

constrained, being a laborious, destructive, and time-consuming process (Beauchêne

et al., 2019).

There have been several advancements in the types of sensors used to image, such as

hyperspectral, fluorescence, thermal, and visible to infrared. These sensors can be

used alone or as mounted on unmanned aerial vehicles (UAVs), robot-assisted imaging

platforms, or cable-suspended camera systems to take real-time images and

measurements throughout the selected time duration. Unmanned aerial vehicles are

particularly useful for low-latitude, high-resolution aerial imaging to evaluate crop

emergence, vigor, and yield potential of row crops (Sankaran et al., 2015; Shi et al., 2016

). Moreover, big data and machine-learning techniques have been applied in the areas

of molecular biology and biotechnology, including genomics, transcriptomics,
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proteomics, and systems biology (Ma et al., 2014) and to evaluate the yield

performance of genetically modified crops (Johnson et al., 2019).

Crop Protection

There can be monetary and environmental

costs that accompany pesticide applications

currently required for pest management.

While also costly, excess use of pesticides

has been shown to increase the prevalence

of pesticide resistance and negative effects

on non-target species (Mallet, 1989). To

improve pesticide recommendations,

researchers have been using data science to

accurately calculate the rate and timing of

application of these agro-chemicals. This

approach considers data collected about the

pest, such as life cycle and biology, along

with environmental factors such as natural predators, growth stages of the target

plant, and weather conditions during the growing season (Meisner et al., 2016).

Additionally, big data and machine-learning methods have become very useful to

control weeds (Ip et al., 2018), detect foliar diseases (Ferentinos, 2018), classify field

crop pests (Xie et al., 2018), and detect stored grain pests (Shen et al., 2018).

To improve pesticide

recommendations, researchers

have been using data science to

accurately calculate the rate and

timing of application of these agro-

chemicals. Photo courtesy of

Flickr/Tamina Miller.

Remote Sensing

Remote sensing is another area where data science is intensively used. The common

applications of remote sensing in agriculture are monitoring agricultural land use,

estimating soil moisture, generating crop planting/intensity maps, classifying crops,
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assessing within- and between-field variabilities, forecasting crop yields, estimating

evapotranspiration and irrigation requirements, monitoring crop health for input

optimization, and evaluating ecosystem services (Weiss et al., 2020). Satellite missions

such as Landsat and Sentinel have substantially improved their spatial, spectral,

temporal, and radiometric resolutions in the past (Wulder et al., 2019). These high-

resolution images are utilized to calculate various vegetative indices to evaluate the

performances of different agricultural systems (Hatfield et al., 2019). For example, Xu

et al. (2018) demonstrated how remote sensing can be used to estimate nitrogen

uptake and cover crop biomass following winter, which could be useful in determining

management practices for early spring.

Agricultural System Models and Decision Support Systems

Agricultural system models require a vast

number of data inputs to simulate target

outputs (e.g., crop development, water

balance, nutrient dynamics, soil carbon, yield,

net return, etc.) at farm and landscape scales

(Antle et al., 2017). Moreover, advanced data

science approaches such as deep learning

have been used to train crop model inputs

and outputs to evaluate the impacts of

irrigation amount and timing on crop yield (Saravi et al., 2019). Wireless sensor

networks (WSN), in combination with internet of things (IoT) and data analytics, aid in

collection of various agro-environmental data, so these models can be integrated into

decision support platforms. For example, Ellenburg et al. (2019) introduced Regional

Hydrological Extremes Assessment System (RHEAS), an integrated modeling

framework, to estimate onset, severity, recovery, and duration of regional droughts and

Data science is intensively used in

remote sensing and decision

support platforms based on web

GIS. Photo courtesy of Adobe

Stock/Monopoly919.
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expected crop yield outlooks. Moreover, decision support platforms based on web GIS

are useful to connect local farmers to regional and global agriculture to improve

demand-and-supply-based input provision, marketing, and agricultural policies

(Delgado et al., 2019).

Combating Climate Variability and Change

Climate data enables researchers to evaluate

the impacts of climate change on major

crops and formulate and implement

adaptation strategies such as climate-smart

agriculture (Rosenzweig et al., 2014; Hassani

et al., 2019). Data science together with the

advancement in information and

communication technology (ICT) is used in

forecasting weather and seasonal climate,

which could help farmers to deal with future

climate variability (Klemm and McPherson, 2017). Improved understanding of the

upcoming season would give producers time to make necessary changes to farm

management. Long-term crop, soil, climate, and topographic data from large

commercial farms have demonstrated the potential to design site-specific

adaptations to climate variability (Martinez-Feria and Basso, 2020). Furthermore,

artificial intelligence, Bayesian models, and neural networks have shown their potential

to enhance climate warnings to extreme weather (Huntingford et al., 2019). Recently,

Newlands et al. (2019) explored the applicability of deep learning to climate risk

management options such as agricultural insurance. It was more accurate than the

other approaches typically used and demonstrated its potential in lowering insurance

coverage costs, among others.

Climate data enables researchers to

evaluate the impacts of climate

change on major crops. Photo

courtesy of Adobe

Stock/scharfsinn86.
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Development of Smallholder Farms

Datasets that evaluate the production performance of major crops such as legumes

(Cernay et al., 2016) and spatial databases like RiceAtlas (Laborte et al., 2017) can be

utilized to enhance the food and nutritional security of smallholder farmers in

developing countries. These datasets are particularly useful to identify the interaction

effects of crop species × location × growing season × treatment combinations on yield,

nitrogen content, and water use efficiency under different management practices

(Cernay et al., 2016). Utilizing this information can allow farmers to predict issues

surrounding environmental variability and to increase production efficiency across

different agro-ecological regions. Data science also offers many opportunities such as

increasing the effectiveness of agricultural development projects and generating

better information for policy decisions. This involves creating systems that respond to

local problems and can be utilized in future predicaments. However, it requires

technological development in extension services, careful governance, and public

investment in order to avoid a few growers monopolizing available space and reducing

further development (van Etten et al., 2017).

Marketing and Supply Chain Management

Pre-season yield forecasting can assist on-farm decision making regarding product

harvesting, storage, and marketing (Oliveira et al., 2018). Data science is widely used in

tracking of food supply chains with the use of Radio Frequency Identification (RFID),

intelligent supply–demand forecasting tools, and information management systems to

ensure quantity, quality, and food system transparency while minimizing food losses

along the supply chain (Tzounis et al., 2017).

Future Prospects
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Data science has been identified as one of

the breakthroughs to advance food and

agricultural research by 2030 by the National

Academies of Sciences, Engineering, and

Medicine. However, challenges exist regarding

quality, ownership, privacy, and security of

data; integration of data types; data

processing and analytics; and uncertainties in

algorithms (Wolfert et al., 2017). Moreover,

data science and scientific principles should

be utilized together to explore data insightfully and to interpret the results accurately.

This theory-guided data science will require interdisciplinary collaboration in research.

With increasing open sources of big data, computational infrastructures, innovative

methodologies, and public involvement in data collection such as citizen science (Ryan

et al., 2019), data science has the potential to increase food security and

environmental sustainability while promoting public- and private-sector initiatives and

business ventures in future agriculture.

Datasets can be utilized to enhance

the food and nutritional security of

smallholder farmers in developing

countries. Photo courtesy of

Flickr/CIGAR Research Program.
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