

Congratulations to our 2019 Photo Contest winners!

February 27, 2020

Abstract

Judges reviewed more than 150 entries among the five categories. Our thanks to Dave Anderson and his team at The Camera Company, Madison, WI, for serving

as judges for our contest.

Since 2014, we've asked for submissions to illustrate each Society's tag line. We have two additional categories, "Tools at Work" and "People at Work," for a total of five categories.

Why are photos important for science? They are great communication tools to tell your science story. Good photos can make a difference by:

- Making research feel more exciting
- Creating interest in our sciences
- Starting discussions and making more connections
- Increasing the public's knowledge
- Changing opinions of others

Photos also go beyond public outreach. Another audience for your photography is funding sources. Many scientists are finding that their grants are better accepted with photos, and many funding bodies are now requiring them. Becoming a better overall communicator—in this case, using photography—can help the future of all your research projects.

Photos make an impact! Look through these photos and their winning descriptions. We think you'll agree! We hope to see your best photo submissions for the 2020 contest.

ASA|Agronomy Feeds the World

First Place | Idowu Atoloye

Improving organic wheat yield

Improving organic wheat yield—the increase in demand for organic grains has prompted farmers to seek ways to ensure higher and consistent wheat yields. A graduate student examines a wheat grain in a dryland organic wheat field for harvest.

Second Place | Keren Duerksen

Baby bean, oh the places you'll go

Comfortably situated within the cover of last year's wheat straw, this soybean emerges. Agronomic advances such as no-till create sustainable solutions to feeding the ever-increasing world population.

Third Place | Jason de Koff

Pollinators needed, inquire within

Agronomy not only provides food for humans but also for pollinators who serve an important role in agricultural production. While pollinators receive important resources from nectar and pollen, about 75% of our food crops require pollinators. Current efforts by the USDA-NRCS provide funding to farmers for pollinator habitat.

CSSA|Plant Science for a Better World

First Place | David Tork

Heliotropism

The flowers of perennial flax are strongly heliotropic, tracking the sun throughout the day and attracting pollinators with their vibrant blue petals. Breeders at the University of Minnesota are working to develop ornamental and agronomic varieties that have additional ecosystem benefits, such as soil stabilization and pollinator services.

Second Place | Keren Duerksen

Flower power

Although it is a world leader in soybean production, the United States imports a surprising amount of edamame. Virginia Tech is currently conducting a multidisciplinary study to enable farmers to efficiently produce edamame. This study will increase fresh, local markets that benefit both producers and consumers.

Third Place | Jaclyn Fiola

Budding pest management strategies for hemp production

Since few pesticides are labeled for hemp production, growers must look to biocontrol and other integrated pest management strategies for pests like this brown marmorated stinkbug (*Halyomorpha halys*). Virginia Tech has hemp trials for CBD, fiber, and seed to help farmers diversify practices and adapt to this specialty crop.

SSSA|Soils Sustain Life

First Place | Brad Bernhard

Just keep pushing

Heavy rains after planting left this soil with a crusted surface. The hypocotyl is the structure of the soybean plant that lifts and pulls the cotyledons up through the soil surface. The hypocotyl on this particular soybean plant needed to work extra hard to push through the crusted soil.

Second Place | Jordyn Bush

On a roll for better soil

Soil is important for more than just plants. A dung beetle in Theodore Roosevelt National Park spends its life redistributing nutrients across the landscape. This diligent beetle rolling its catch of the day across the landscape reminds us that soils sustain life at all levels of an ecosystem.

Third Place | Aditi Pandey

Soil strength

A high-kaolinitic soil was consolidated with a silicate binder into cubic samples and crushed using a uniaxial force giving cement-equivalent compressive strengths. Soil provides shelter to life of all scales and is demonstrated here as a primary constituent of a strong composite that can replace conventional materials in human shelters.

ASA, CSSA, and SSSA|People at Work

First Place | Eduardo Garay

Evaluating and improving nitrogen input efficiency

Evaluating and improving nitrogen input efficiency—cover crops have shown various benefits depending on the species. A graduate student collects chlorophyll data with a SPAD meter to correlate it with nitrogen (N) concentration. The study evaluates nitrogen dynamics in winter-spring cover cropping biculture mixtures and its

synergistic or antagonistic effects on a strip-tilled corn production system.

Second Place | Anne Dinges

Women in science

Young women scientists make big impacts when they jump into conversations, experiments, labs, and fields to perform trials, analyze data, and communicate their findings. Agronomic solutions are at our fingertips if we focus in and work hard to improve the world around us.

Third Place | Brad Bernhard

Getting to the root of the problem

Researching the effects of different management factors on the physiological growth of corn roots is a dirty job. Sampling and power washing more than 1,500 corn roots not only taught the students about the physiology of corn roots, but also how to get

mud stains out of their clothes.

ASA, CSSA, and SSSA|Tools at Work

First Place | Maggie Borders

Up close and colorful

A Munsell Soil Color Book, muffin tin, spray bottle, and soil knife can be seen helping this soil judge with her analysis. However, the focus of this photo is something we don't always consider to be a tool, but certainly is: the human hand.

Second Place | Leanna Thalmann

Weather station in northern New York

The weather station at my research site in northern New York during the growing season. The station measures air temperature, pressure, relative humidity, and rainfall every hour throughout the year. This monitoring device is crucial for characterizing the

weather conditions that will impact plant growth and water quality.

Third Place | Rajveer Singh

Awaiting water

This picture depicts one of the nozzles of a central-pivot irrigation system. Invented in late 1940 by a Nebraska farmer, central-pivot irrigation has changed the agricultural landscape of the country. This innovative technology is capable of sustaining crops even on dry barren lands.

[More news & perspectives](#)

[Back to issue](#)

[Back to home](#)

Text © . The authors. CC BY-NC-ND 4.0. Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.